3.540 \(\int x^4 (A+B x) (a^2+2 a b x+b^2 x^2)^3 \, dx\)

Optimal. Leaf size=139 \[ \frac{2 a^2 (a+b x)^9 (3 A b-5 a B)}{9 b^6}-\frac{a^3 (a+b x)^8 (4 A b-5 a B)}{8 b^6}+\frac{a^4 (a+b x)^7 (A b-a B)}{7 b^6}+\frac{(a+b x)^{11} (A b-5 a B)}{11 b^6}-\frac{a (a+b x)^{10} (2 A b-5 a B)}{5 b^6}+\frac{B (a+b x)^{12}}{12 b^6} \]

[Out]

(a^4*(A*b - a*B)*(a + b*x)^7)/(7*b^6) - (a^3*(4*A*b - 5*a*B)*(a + b*x)^8)/(8*b^6) + (2*a^2*(3*A*b - 5*a*B)*(a
+ b*x)^9)/(9*b^6) - (a*(2*A*b - 5*a*B)*(a + b*x)^10)/(5*b^6) + ((A*b - 5*a*B)*(a + b*x)^11)/(11*b^6) + (B*(a +
 b*x)^12)/(12*b^6)

________________________________________________________________________________________

Rubi [A]  time = 0.0975585, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {27, 76} \[ \frac{2 a^2 (a+b x)^9 (3 A b-5 a B)}{9 b^6}-\frac{a^3 (a+b x)^8 (4 A b-5 a B)}{8 b^6}+\frac{a^4 (a+b x)^7 (A b-a B)}{7 b^6}+\frac{(a+b x)^{11} (A b-5 a B)}{11 b^6}-\frac{a (a+b x)^{10} (2 A b-5 a B)}{5 b^6}+\frac{B (a+b x)^{12}}{12 b^6} \]

Antiderivative was successfully verified.

[In]

Int[x^4*(A + B*x)*(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(a^4*(A*b - a*B)*(a + b*x)^7)/(7*b^6) - (a^3*(4*A*b - 5*a*B)*(a + b*x)^8)/(8*b^6) + (2*a^2*(3*A*b - 5*a*B)*(a
+ b*x)^9)/(9*b^6) - (a*(2*A*b - 5*a*B)*(a + b*x)^10)/(5*b^6) + ((A*b - 5*a*B)*(a + b*x)^11)/(11*b^6) + (B*(a +
 b*x)^12)/(12*b^6)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && N
eQ[b*e + a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && Rational
Q[a, b, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])

Rubi steps

\begin{align*} \int x^4 (A+B x) \left (a^2+2 a b x+b^2 x^2\right )^3 \, dx &=\int x^4 (a+b x)^6 (A+B x) \, dx\\ &=\int \left (-\frac{a^4 (-A b+a B) (a+b x)^6}{b^5}+\frac{a^3 (-4 A b+5 a B) (a+b x)^7}{b^5}-\frac{2 a^2 (-3 A b+5 a B) (a+b x)^8}{b^5}+\frac{2 a (-2 A b+5 a B) (a+b x)^9}{b^5}+\frac{(A b-5 a B) (a+b x)^{10}}{b^5}+\frac{B (a+b x)^{11}}{b^5}\right ) \, dx\\ &=\frac{a^4 (A b-a B) (a+b x)^7}{7 b^6}-\frac{a^3 (4 A b-5 a B) (a+b x)^8}{8 b^6}+\frac{2 a^2 (3 A b-5 a B) (a+b x)^9}{9 b^6}-\frac{a (2 A b-5 a B) (a+b x)^{10}}{5 b^6}+\frac{(A b-5 a B) (a+b x)^{11}}{11 b^6}+\frac{B (a+b x)^{12}}{12 b^6}\\ \end{align*}

Mathematica [A]  time = 0.0177665, size = 143, normalized size = 1.03 \[ \frac{5}{9} a^2 b^3 x^9 (4 a B+3 A b)+\frac{5}{8} a^3 b^2 x^8 (3 a B+4 A b)+\frac{3}{7} a^4 b x^7 (2 a B+5 A b)+\frac{1}{6} a^5 x^6 (a B+6 A b)+\frac{1}{5} a^6 A x^5+\frac{1}{11} b^5 x^{11} (6 a B+A b)+\frac{3}{10} a b^4 x^{10} (5 a B+2 A b)+\frac{1}{12} b^6 B x^{12} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4*(A + B*x)*(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(a^6*A*x^5)/5 + (a^5*(6*A*b + a*B)*x^6)/6 + (3*a^4*b*(5*A*b + 2*a*B)*x^7)/7 + (5*a^3*b^2*(4*A*b + 3*a*B)*x^8)/
8 + (5*a^2*b^3*(3*A*b + 4*a*B)*x^9)/9 + (3*a*b^4*(2*A*b + 5*a*B)*x^10)/10 + (b^5*(A*b + 6*a*B)*x^11)/11 + (b^6
*B*x^12)/12

________________________________________________________________________________________

Maple [A]  time = 0., size = 148, normalized size = 1.1 \begin{align*}{\frac{B{b}^{6}{x}^{12}}{12}}+{\frac{ \left ( A{b}^{6}+6\,Ba{b}^{5} \right ){x}^{11}}{11}}+{\frac{ \left ( 6\,Aa{b}^{5}+15\,B{a}^{2}{b}^{4} \right ){x}^{10}}{10}}+{\frac{ \left ( 15\,A{a}^{2}{b}^{4}+20\,B{a}^{3}{b}^{3} \right ){x}^{9}}{9}}+{\frac{ \left ( 20\,A{a}^{3}{b}^{3}+15\,B{a}^{4}{b}^{2} \right ){x}^{8}}{8}}+{\frac{ \left ( 15\,A{a}^{4}{b}^{2}+6\,B{a}^{5}b \right ){x}^{7}}{7}}+{\frac{ \left ( 6\,A{a}^{5}b+B{a}^{6} \right ){x}^{6}}{6}}+{\frac{A{a}^{6}{x}^{5}}{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(B*x+A)*(b^2*x^2+2*a*b*x+a^2)^3,x)

[Out]

1/12*B*b^6*x^12+1/11*(A*b^6+6*B*a*b^5)*x^11+1/10*(6*A*a*b^5+15*B*a^2*b^4)*x^10+1/9*(15*A*a^2*b^4+20*B*a^3*b^3)
*x^9+1/8*(20*A*a^3*b^3+15*B*a^4*b^2)*x^8+1/7*(15*A*a^4*b^2+6*B*a^5*b)*x^7+1/6*(6*A*a^5*b+B*a^6)*x^6+1/5*A*a^6*
x^5

________________________________________________________________________________________

Maxima [A]  time = 1.02903, size = 198, normalized size = 1.42 \begin{align*} \frac{1}{12} \, B b^{6} x^{12} + \frac{1}{5} \, A a^{6} x^{5} + \frac{1}{11} \,{\left (6 \, B a b^{5} + A b^{6}\right )} x^{11} + \frac{3}{10} \,{\left (5 \, B a^{2} b^{4} + 2 \, A a b^{5}\right )} x^{10} + \frac{5}{9} \,{\left (4 \, B a^{3} b^{3} + 3 \, A a^{2} b^{4}\right )} x^{9} + \frac{5}{8} \,{\left (3 \, B a^{4} b^{2} + 4 \, A a^{3} b^{3}\right )} x^{8} + \frac{3}{7} \,{\left (2 \, B a^{5} b + 5 \, A a^{4} b^{2}\right )} x^{7} + \frac{1}{6} \,{\left (B a^{6} + 6 \, A a^{5} b\right )} x^{6} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="maxima")

[Out]

1/12*B*b^6*x^12 + 1/5*A*a^6*x^5 + 1/11*(6*B*a*b^5 + A*b^6)*x^11 + 3/10*(5*B*a^2*b^4 + 2*A*a*b^5)*x^10 + 5/9*(4
*B*a^3*b^3 + 3*A*a^2*b^4)*x^9 + 5/8*(3*B*a^4*b^2 + 4*A*a^3*b^3)*x^8 + 3/7*(2*B*a^5*b + 5*A*a^4*b^2)*x^7 + 1/6*
(B*a^6 + 6*A*a^5*b)*x^6

________________________________________________________________________________________

Fricas [A]  time = 1.35291, size = 354, normalized size = 2.55 \begin{align*} \frac{1}{12} x^{12} b^{6} B + \frac{6}{11} x^{11} b^{5} a B + \frac{1}{11} x^{11} b^{6} A + \frac{3}{2} x^{10} b^{4} a^{2} B + \frac{3}{5} x^{10} b^{5} a A + \frac{20}{9} x^{9} b^{3} a^{3} B + \frac{5}{3} x^{9} b^{4} a^{2} A + \frac{15}{8} x^{8} b^{2} a^{4} B + \frac{5}{2} x^{8} b^{3} a^{3} A + \frac{6}{7} x^{7} b a^{5} B + \frac{15}{7} x^{7} b^{2} a^{4} A + \frac{1}{6} x^{6} a^{6} B + x^{6} b a^{5} A + \frac{1}{5} x^{5} a^{6} A \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="fricas")

[Out]

1/12*x^12*b^6*B + 6/11*x^11*b^5*a*B + 1/11*x^11*b^6*A + 3/2*x^10*b^4*a^2*B + 3/5*x^10*b^5*a*A + 20/9*x^9*b^3*a
^3*B + 5/3*x^9*b^4*a^2*A + 15/8*x^8*b^2*a^4*B + 5/2*x^8*b^3*a^3*A + 6/7*x^7*b*a^5*B + 15/7*x^7*b^2*a^4*A + 1/6
*x^6*a^6*B + x^6*b*a^5*A + 1/5*x^5*a^6*A

________________________________________________________________________________________

Sympy [A]  time = 0.096977, size = 162, normalized size = 1.17 \begin{align*} \frac{A a^{6} x^{5}}{5} + \frac{B b^{6} x^{12}}{12} + x^{11} \left (\frac{A b^{6}}{11} + \frac{6 B a b^{5}}{11}\right ) + x^{10} \left (\frac{3 A a b^{5}}{5} + \frac{3 B a^{2} b^{4}}{2}\right ) + x^{9} \left (\frac{5 A a^{2} b^{4}}{3} + \frac{20 B a^{3} b^{3}}{9}\right ) + x^{8} \left (\frac{5 A a^{3} b^{3}}{2} + \frac{15 B a^{4} b^{2}}{8}\right ) + x^{7} \left (\frac{15 A a^{4} b^{2}}{7} + \frac{6 B a^{5} b}{7}\right ) + x^{6} \left (A a^{5} b + \frac{B a^{6}}{6}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(B*x+A)*(b**2*x**2+2*a*b*x+a**2)**3,x)

[Out]

A*a**6*x**5/5 + B*b**6*x**12/12 + x**11*(A*b**6/11 + 6*B*a*b**5/11) + x**10*(3*A*a*b**5/5 + 3*B*a**2*b**4/2) +
 x**9*(5*A*a**2*b**4/3 + 20*B*a**3*b**3/9) + x**8*(5*A*a**3*b**3/2 + 15*B*a**4*b**2/8) + x**7*(15*A*a**4*b**2/
7 + 6*B*a**5*b/7) + x**6*(A*a**5*b + B*a**6/6)

________________________________________________________________________________________

Giac [A]  time = 1.13472, size = 200, normalized size = 1.44 \begin{align*} \frac{1}{12} \, B b^{6} x^{12} + \frac{6}{11} \, B a b^{5} x^{11} + \frac{1}{11} \, A b^{6} x^{11} + \frac{3}{2} \, B a^{2} b^{4} x^{10} + \frac{3}{5} \, A a b^{5} x^{10} + \frac{20}{9} \, B a^{3} b^{3} x^{9} + \frac{5}{3} \, A a^{2} b^{4} x^{9} + \frac{15}{8} \, B a^{4} b^{2} x^{8} + \frac{5}{2} \, A a^{3} b^{3} x^{8} + \frac{6}{7} \, B a^{5} b x^{7} + \frac{15}{7} \, A a^{4} b^{2} x^{7} + \frac{1}{6} \, B a^{6} x^{6} + A a^{5} b x^{6} + \frac{1}{5} \, A a^{6} x^{5} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(B*x+A)*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="giac")

[Out]

1/12*B*b^6*x^12 + 6/11*B*a*b^5*x^11 + 1/11*A*b^6*x^11 + 3/2*B*a^2*b^4*x^10 + 3/5*A*a*b^5*x^10 + 20/9*B*a^3*b^3
*x^9 + 5/3*A*a^2*b^4*x^9 + 15/8*B*a^4*b^2*x^8 + 5/2*A*a^3*b^3*x^8 + 6/7*B*a^5*b*x^7 + 15/7*A*a^4*b^2*x^7 + 1/6
*B*a^6*x^6 + A*a^5*b*x^6 + 1/5*A*a^6*x^5